
Extensible Provisioning Protocol (EPP) RESTful

Transport

Abstract

This document describes RESTful EPP (REPP), a data format agnostic, REST based

Application Programming Interface (API) for the Extensible Provisioning Protocol

. REPP enables the development of a stateless and scalable EPP service.

This document includes a mapping of EPP commands to a RESTful HTTP

based interface. Existing semantics as defined in , and

are retained and reused in RESTful EPP.

Workgroup:

Internet-Draft:

Published:

Intended

Status:

Expires:

Authors:

Network Working Group

draft-wullink-restful-epp-01

15 February 2024

Standards Track

18 August 2024

 M. Wullink

SIDN Labs

M. Davids

SIDN Labs

[RFC5730]

[RFC5730] [XML]

[RFC5731] [RFC5732] [RFC5733]

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP

79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note

that other groups may also distribute working documents as Internet-Drafts. The list of

current Internet-Drafts is at .

Internet-Drafts are draft documents valid for a maximum of six months and may be

updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use

Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 18 August 2024.

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All

rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and

https://trustee.ietf.org/license-info

Wullink & Davids Expires 18 August 2024 Page 1

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

restrictions with respect to this document. Code Components extracted from this document

must include Revised BSD License text as described in Section 4.e of the Trust Legal

Provisions and are provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Conventions Used in This Document

4. Design Considerations

5. EPP Extension Framework

6. Resource Naming Convention

7. Session Management

8. REST

8.1. Method Definition

8.2. Content negotiation

8.3. Request

8.4. Response

8.5. Error Handling

9. Command Mapping

9.1. Hello

9.2. Login

9.3. Logout

9.4. Query Resources

9.4.1. Check

9.4.2. Info

9.4.2.1. Object Filtering

9.4.3. Poll

9.4.3.1. Poll Request

9.4.3.2. Poll Ack

9.4.4. Transfer Query

4

4

5

5

6

6

7

7

8

8

9

10

10

11

12

13

14

14

14

15

16

17

17

18

19

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 2

9.5. Transform Resources

9.5.1. Create

9.5.2. Delete

9.5.3. Renew

9.5.4. Transfer

9.5.4.1. Request

9.5.4.2. Cancel

9.5.4.3. Reject

9.5.4.4. Approve

9.5.5. Update

9.6. Extension Framework

9.6.1. Protocol Extension

9.6.2. Object Extension

9.6.3. Command-Response Extension

10. Protocol Considerations

11. Formal Syntax

12. IANA Considerations

13. Internationalization Considerations

14. Security Considerations

15. Obsolete EPP Result Codes

16. Overview of EPP modifications

17. Acknowledgments

18. References

18.1. Normative References

18.2. Informative References

Authors' Addresses

21

21

23

23

25

25

27

28

29

30

31

32

33

35

35

36

43

43

43

44

44

44

44

44

46

47

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 3

1. Introduction

This document describes an Application Programming Interface (API) for the Extensible

Provisioning Protocol (EPP) protocol described in . The API leverages the HTTP

protocol and the principles of . Conforming to the REST constraints is

generally referred to as being "RESTful". Hence the API is dubbed: "'RESTful EPP" or

"REPP" for short.

REPP includes a mapping of EPP commands to REST resources based on

Uniform Resource Locators (URLs) defined in . REPP uses a stateless

architecture. It aims to provide a solution that is more suitable for complex, high

availability environments.

Section 2.1 of describes how EPP can be layered over multiple transport

protocols. Currently, EPP transport over TCP is the only widely deployed

transport mapping for EPP. Section 2.1 furthermore requires that newly defined transport

mappings preserve the stateful nature of EPP. This document updates this requirement to

also allow stateless for EPP transport.

The stateless nature of REPP requires that no client or application state is maintained on

the server. Each client request to the server must contain all the information necessary for

the server to process the request.

REPP is data format agnostic, the client uses server-driven content negotiation. Allowing

the client to select from a set of representation media types supported by the server, such

as XML, JSON or .

[RFC5730]

[RFC2616] [REST]

[RFC5730]

[RFC1738]

[RFC5730]

[RFC5734]

[RFC8259] [YAML]

2. Terminology

In this document the following terminology is used.

REST - Representational State Transfer (). An architectural style.

RESTful - A RESTful web service is a web service or API implemented using HTTP and the

principles of .

EPP RFCs - This is a reference to the EPP version 1.0 specifications , ,

 and .

Stateful EPP - The definition according to .

RESTful EPP or REPP - The RESTful transport for EPP described in this document.

URL - A Uniform Resource Locator as defined in .

Resource - An object having a type, data, and possible relationship to other resources,

identified by a URL.

Command Mapping - A mapping of EPP commands to RESTful EPP URL

resources.

[REST]

[REST]

[RFC5730] [RFC5731]

[RFC5732] [RFC5733]

Section 2 of [RFC5730]

[RFC3986]

[RFC5730]

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 4

https://rfc-editor.org/rfc/rfc5730#appendix-Section%202.1
https://rfc-editor.org/rfc/rfc5730#appendix-Section%202.1
https://rfc-editor.org/rfc/rfc5730#section-2

REPP client - An HTTP user agent performing an REPP request

REPP server - An HTTP server responsible for processing requests and returning results in

any supported media type.

3. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT","SHOULD",

"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be

interpreted as described in .

XML is case sensitive. Unless stated otherwise, XML specifications and examples provided

in this document MUST be interpreted in the character case presented to develop a

conforming implementation.

The examples in this document assume that request and response messages are properly

formatted XML documents.

In examples, lines starting with "C:" represent data sent by a REPP client and lines starting

with "S:" represent data returned by a REPP server. Indentation and white space in

examples are provided only to illustrate element relationships and are not REQUIRED

features of the protocol.

All example requests assume a REPP server using HTTP version 2 is listening on the

standard HTTPS port on host reppp.example.nl. An authorization token has been provided

by an out of band process and MUST be used by the client to authenticate each request.

[RFC2119]

4. Design Considerations

RESTful transport for EPP (REPP) is designed to improve the ease of design, development,

deployment, and management of an EPP service. This section lists the main design criteria.

Ease of use, provide a clear, clean, easy to use and self-explanatory interface that can

easily be integrated into existing software systems. Based on these principles a

architectural style was chosen, where a client interacts with a REPP server via HTTP.

Scalability, HTTP allows the use of well know mechanisms for creating scalable

systems, such as load balancing. Load balancing at the level of request messages is

more efficient compared to load balancing based on TCP sessions. When using EPP over

TCP, the TCP session can be used to transmit multiple request messages and these are

then all processed by a single EPP server and not load balanced across a pool of

available servers. During normal registry operations, the bulk of EPP requests can be

expected to be of the informational type, load balancing and possibly separating these

to dedicated compute resources may also improve registry services and provide better

performance for the transform request types.

Stateless, REQUIRES a stateful session between a client and server. A REPP

server MUST be stateless and MUST NOT keep client session or any other application

state. Each client request needs to provide all the information necessary for the server

to successfully process the request.

•

[REST]

•

• [RFC5730]

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 5

Security, allow for the use of authentication and authorization solutions available for

HTTP based applications. HTTP provides an Authorization header

.

Content negotiation, A server may choose to include support for multiple media types.

The client must be able to signal to the server what media type the server should

expect for the request content and to use for the response content. This document only

describes the use of but the use of other media types such as JSON

should also be possible.

Compatibility with existing EPP semantics defined in the EPP RFCs.

Simplicity, when the semantics of a resource URL and HTTP method match an EPP

command and request message, the use of a request message should be optional.

Performance, reducing the number of required request and response messages,

improves the performance and network bandwidth requirements for both client and

server. Fewer messages have to be created, marshalled, and transmitted.

•

Section 14.8 of

[RFC2616]

•

[XML] [RFC7159]

•

•

•

5. EPP Extension Framework

Section 2 of describes how the EPP extension framework can be used to extend

EPP functionality by adding new features at the protocol, object and command-response

level. This section describes the impact of REPP on each of the extension levels:

Protocol Extension: Section 9 describes a protocol extension resource for use with

existing and future protocol extensions. REPP does not define a new Protocol extension.

All existing and future Protocol extension level EPP extensions MAY be used.

Object extension: REPP does not define any new object level extensions. All existing

and future object level EPP extensions MAY be used.

Command-Response extension: Section 9 describes a Command-Response extension

resource for each object mapping and can be used for existing and future command

extensions. REPP does not define a new Command-Response extension. All existing

and future Command-Response extension level EPP extensions MAY be used.

[RFC3735]

•

•

•

6. Resource Naming Convention

A REPP resource can be a single unique object identifier e.g. a domain name or consist out

of a collection of objects. A collection of objects available for registry operations MUST be

identified by: /{context-root}/{version}/{collection}

{context-root} is the base URL which MUST be specified, the {context-root} MAY be an

empty, zero length string.

{version} is a path segment which identifies the version of the REPP implementation.

This is the equivalent of the Version element in the EPP RFCs. The version used in the

REPP URL MUST match the version used in EPP Greeting message.

{collection} MUST be substituted by "domains", "hosts" or "contacts" or other

supported objects, referring to either , or .

A trailing slash MAY be added to each request. Implementations MUST consider requests

which only differ with respect to this trailing slash as identical.

•

•

•

[RFC5731] [RFC5732] [RFC5733]

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 6

https://rfc-editor.org/rfc/rfc2616#section-14.8
https://rfc-editor.org/rfc/rfc3735#appendix-Section%202

A specific EPP object instance MUST be identified by {context-root}/ {version}/

{collection}/{id} where {id} is a unique object identifier described in EPP RFCs.

An example domain name resource, for domain name example.nl, would look like this:

/repp/v1/domains/example.nl

The path segment after a collection path segment MUST be used to identify an object

instance, the path segment after an object instance MUST be used to identify attributes or

related collections of the object instance.

Resource URLs used by REPP contain embedded object identifiers. By using an object

identifier in the resource URL, the object identifier in the request messages becomes

superfluous. However, since the goal of REPP is to maintain compatibility with existing EPP

object mapping schemas, this redundancy is accepted as a tradeoff. Removing the object

identifier from the request message would require updating the object mapping schemas in

the EPP RFCs.

The server MUST return HTTP status code 412 when the object identifier, for example

domain:name, host:name or contact:id, in the EPP request message does not match the

{id} object identifier embedded in the URL.

7. Session Management

One of the main design considerations for REPP is to enable scalable EPP services, for this

reason the REPP uses a stateless architecture and does not create and maintain client

sessions. The Session concept is an anti-pattern in the context of a stateless service, the

server MUST NOT maintain any state information relating to the client or EPP transaction.

Session management as described in requires a stateful server architecture for

maintaining client and application state over multiple client request and is therefore no

longer supported.

A REPP request MUST contain all information required for the server to be able to

successfully process the request. The client MUST include authentication credentials for

each request. This MAY be done by using any of the available HTTP authentication

mechanisms, such as those described in .

A REPP server MUST listen for HTTP connection requests on the standard TCP port assigned

in . After a connection has been established, the server MUST NOT return a

Greeting message. The server MAY close open TCP connections when these violate server

policies, for instance connections having a long inactivity period or a long connection

lifetime.

[RFC5730]

[RFC2617]

[RFC2616]

8. REST

REPP uses the REST architectural style, each HTTP method is assigned a distinct behavior,

Section 8.1 provides an overview of the behavior assigned to each method. REPP requests

are expressed by a URL referring to a resource, a HTTP method, HTTP headers and an

optional message body containing the EPP request message.

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 7

A REPP HTTP message body MUST contain at most a single EPP request or response. HTTP

requests MUST be processed independently of each other and in the same order as

received by the server. A client MAY choose to send a new request, using an existing

connection, before the response for the previous request has been received (pipelining). A

server using HTTP/2 or HTTP/3 contains built-in support for stream

multiplexing and MAY choose to support pipelining using this mechanism. The response

MAY be returned out of order back to the client, because some requests require more

processing time by the server.

HTTP/1 does not use persistent connections by default, the client MAY use the "Connection"

header to request for the server not to close the existing connection, so it can be re-used

for future requests. The server MAY choose not to honor this request.

[RFC7540] [RFC9114]

8.1. Method Definition

REPP commands MUST be executed by using an HTTP method on a resource identified by

an URL. The server MUST support the following methods.

GET: Request a representation of an object resource or a collection of resources

PUT: Update an existing object resource

PATCH: Partially update an existing object resource

POST: Create a new object resource

DELETE: Delete an existing object resource

HEAD: Check for the existence of an object resource

OPTIONS: Request a greeting

•

•

•

•

•

•

•

8.2. Content negotiation

The server MAY choose to support multiple data format for EPP object representations,

such as XML and JSON. The client and server MUST support server-driven content

negotiation and related HTTP headers for content negotiation, as described in

.

The client MUST use the following HTTP headers:

Content-Type: Used to indicate the media type for the content in the message body

Accept: Used to indicate the media type the server MUST use for the representation of

objects, this MAY be a list of types and related weight factors, as described in

The client MUST synchronize the value for the Content-Type and Accept headers, for

example a client MUST NOT send an XML formatted request message to the server, while at

the same time requesting a JSON formatted response message. The server MUST use the

Content-Type HTTP header to indicate the media type used for the representation in the

response message body. The server MUST return HTTP status code 406 (Not Acceptable) or

415 (Unsupported Media Type) when the client requests an unsupported media type.

Section 12.2

of [RFC2616]

•

•

Section

14.1 of [RFC2616]

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 8

https://rfc-editor.org/rfc/rfc2616#section-12.2
https://rfc-editor.org/rfc/rfc2616#section-14.1
https://rfc-editor.org/rfc/rfc2616#section-14.1

8.3. Request

In contrast to EPP over TCP , a REPP request does not always require a EPP

request message. The information conveyed by the HTTP method, URL, and request

headers may be sufficient for the server to be able to successfully processes a request for

most commands. However, the client MUST include the request message in the HTTP

request body when the server uses an EPP extension that requires additional XML elements

or attributes to be present in the request message. All REPP HTTP headers listed below use

the "REPP-" prefix, following the recommendations in .

REPP-Cltrid: The client transaction identifier is the equivalent of the clTRID element

defined in and MUST be used accordingly, when the HTTP message body

does not contain an EPP request that includes a cltrid.

REPP-Svcs: The namespace used by the client in the EPP request message, this is

equivalent to the "svcs" element in the Login command defined in

. The client MUST use this header if the media type of the request or

response message body content requires the server to know what namespaces to use.

Such as is the case for XML-based request and response messages. The header value

MAY contain multiple comma separated namespaces.

REPP-Svcs-Ext: The extension namespace used by the client in the EPP request

message, this is equivalent to the "svcExtension" element in the Login command

defined in

REPP-AuthInfo: The client MAY use this header for sending basic token-based

authorization information, as described in and

. If the authorization is linked to a contact object then the client MUST also

include the REPP-Roid header.

REPP-Roid: If the authorization info, is linked to a database object, the client MAY use

this header for the Repository Object IDentifier (ROID), as described in

.

Accept-Language: This header is equivalent to the "lang" element of the EPP Login

command. The server MUST support the use of HTTP Accept-Language header by

clients. The client MAY issue a Hello request to discover the languages supported by the

server. Multiple servers in a load-balanced environment SHOULD reply with consistent

"lang" elements in the Greeting response. The value of the Accept-Language header

MUST match 1 of the languages from the Greeting. When the server receives a request

using an unsupported language, the server MUST respond using the default language

configured for the server, as required in

Connection: If the server uses HTTP/1.1 or lower, the CLIENT MAY choose to use this

header to request the server to keep op the TCT-connection. The client MUST not use

this header when the server uses HTTP/2 or HTTP/3

Accept-Encoding: The client MAY choose to use the Accept-Encoding HTTP header to

request the server to use compression for the response message body.

[RFC5734]

[RFC6648]

•

[RFC5730]

•

Section 2.9.1.1 of

[RFC5730]

•

Section 2.9.1.1 of [RFC5730]

•

Section 2.6 of [RFC5731] Section 2.8 of

[RFC5733]

•

Section 4.2 of

[RFC5730]

•

Section 2.9.1.1 of [RFC5730]

•

Section 8.2.2 of [RFC9113] Section

4.2 of [RFC9113]

•

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 9

https://rfc-editor.org/rfc/rfc5730#section-2.9.1.1
https://rfc-editor.org/rfc/rfc5730#section-2.9.1.1
https://rfc-editor.org/rfc/rfc5731#section-2.6
https://rfc-editor.org/rfc/rfc5733#section-2.8
https://rfc-editor.org/rfc/rfc5730#section-4.2
https://rfc-editor.org/rfc/rfc5730#section-2.9.1.1
https://rfc-editor.org/rfc/rfc9113#section-8.2.2
https://rfc-editor.org/rfc/rfc9113#section-4.2
https://rfc-editor.org/rfc/rfc9113#section-4.2

8.4. Response

The server HTTP response contains a status code, headers, and MAY contain an EPP

response message in the message body. HTTP headers are used to transmit additional data

to the client and MAY be used to send EPP process related data to the client. HTTP headers

used by REPP MUST use the "REPP-" prefix, the following response headers have been

defined for REPP.

REPP-Svtrid: This header is the equivalent of the "svTRID" element defined in

 and MUST be used accordingly when the REPP response does not contain an

EPP response in the HTTP message body. If an HTTP message body with the EPP XML

equivalent "svTRID" exists, both values MUST be consistent.

REPP-Cltrid: This header is the equivalent of the "clTRID" element defined in

and MUST be used accordingly when the REPP response does not contain an EPP

response in the HTTP message body. If the contents of the HTTP message body

contains a "clTRID" value, then both values MUST be consistent.

REPP-Eppcode: This header is the equivalent of the EPP result code defined in

 and MUST be used accordingly. This header MUST be added to all

responses, except for the Greeting, and MAY be used by the client for easy access to

the EPP result code, without having to parse the content of the HTTP response message

body.

REPP-Check-Avail: An alternative for the "avail" attribute of the object:name element in

an Object Check response and MUST be used accordingly. The server does not return a

HTTP message body in response to a REPP Object Check request.

REPP-Check-Reason: An optional alternative for the "object:reason" element in an

Object Check response and MUST be used accordingly.

REPP-Queue-Size: Return the number of unacknowledged messages in the client

message queue. The server MAY include this header in all REPP responses.

Cache-Control: The client MUST never cache results, the server MUST always return the

value "No-Store" for this header, as described in .

Content-Language: The server MUST include this header in every response that contains

an EPP message in the message body.

Content-Encoding: The server MAY choose to compress the responses message body,

using an algorithm selected from the list of algorithms provided by the client using the

Accept-Encoding request header.

REPP does not always return an EPP response message in the HTTP message body. The

Object Check request for example may return an empty HTTP response body. When the

server does not return an EPP message, it MUST return at least the REPP-Svtrid, REPP-

Cltrid and REPP-Eppcode headers.

•

[RFC5730]

• [RFC5730]

•

[RFC5730]

•

•

•

•

Section 5.2.1.5 of [RFC7234]

•

•

8.5. Error Handling

Restful EPP and HTTP protocol are both an application layer protocol, having their own

status- and result codes. The endpoints described in Section 9 MUST return HTTP status

code 200 (OK) for successful requests when the EPP result code indicates a positive

completion (1xxx) of the EPP command.

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 10

https://rfc-editor.org/rfc/rfc7234#section-5.2.1.5

When an EPP command results in a negative completion result code (2xxx), the server

MUST return the HTTP status code 422 (Unprocessable Content). A more detailed

explanation of the EPP error MUST be included in the message body of the HTTP response,

as described in , but only when this is permitted for the used HTTP method.

Errors related to the HTTP protocol MUST result in the use of an appropriate HTTP status

code by the HTTP server. An error or problem while processing one request MUST NOT

result in the failure of other independent requests using the same connection.

The client MUST be able to use the best practices for RESTful applications and use the HTTP

status code to determine if the EPP request was successfully processed. The client MAY use

the well defined HTTP status code and REPP-Eppcode HTTP header for error handling logic,

without having to parse the EPP result code in the message body.

For example, a client sending an Object Transfer request for an Object already linked to an

active transfer process, will result in an EPP result code 2106, the HTTP response contains

a status code 422 and he value for the REPP-Eppcode HTTP header is set to 2106. The

client MAY use the HTTP status code for checking if an EPP command failed and only parse

the result message when additional information from the response message is required for

handling the error.

[RFC9110]

9. Command Mapping

EPP commands are mapped to RESTful EPP requests using four elements.

Resource defined by a URL

HTTP method to be used on the resource

EPP request message

EPP response message

Table 1 lists a mapping for each EPP command to a REPP request, the subsequent sections

provide details for each request. Resource URLs in the table are assumed to be using the

prefix: "/{context-root}/{version}/". Some REPP endpoints do not require a request and/or

response message, as is indicated by the table columns "Request" and "response".

{c}: An abbreviation for {collection}: this MUST be substituted with "domains",

"hosts", "contacts" or any other collection of objects.

{i}: An abbreviation for an object id, this MUST be substituted with the value of a

domain name, hostname, contact-id or a message-id or any other defined object.

Optional: A request message is only required when the server uses an EPP extension,

which requires the use of XML elements and/or atributes that are not mapped to REPP.

1.

2.

3.

4.

•

•

•

Command Method Resource Request Response

Hello OPTIONS / No Yes

Login N/A N/A N/A N/A

Logout N/A N/A N/A N/A

Check HEAD /{c}/{i} No No

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 11

[1] This mapping is used for Object extensions based on the extension mechanism as

defined in [RFC5730, section 2.7.2] [2] This mapping is used for Protocol extensions based

on the extension mechanism as defined in [RFC5730, seciton 2.7.1]

When there is a mismatch between a resource identifier in the HTTP message body and the

resource identifier in the URL used for a request, then the server MUST return HTTP status

code 400 (Bad Request). The examples, in the sections below, assume the server does not

use any EPP extensions and therefore the client does not add any request message to the

HTTP message body.

Command Method Resource Request Response

Info GET /{c}/{i} Optional Yes

Poll Request GET /messages No Yes

Poll Ack DELETE /messages/{i} No Yes

Create POST /{c} Yes Yes

Delete DELETE /{c}/{i} Optional Yes

Renew POST /{c}/{i}/renewals Optional Yes

Transfer Request POST /{c}/{i}/transfers Optional Yes

Transfer Query GET /{c}/{i}/transfers/latest Optional Yes

Transfer Cancel DELETE /{c}/{i}/transfers/latest Optional Yes

Transfer Approve PUT /{c}/{i}/transfers/latest Optional Yes

Transfer Reject DELETE /{c}/{i}/transfers/latest Optional Yes

Update PATCH /{c}/{i} Yes Yes

Extension [1] * /{c}/{i}/extension/* * *

Extension [2] * /extension/* * *

Table 1: Mapping of EPP Command to REPP Request

9.1. Hello

Request: OPTIONS /

Request message: None

Response message: Greeting response

Due to the stateless nature of REPP, the server does not respond by sending a Greeting

message when a connection is created, as described in . The client

MUST request a Greeting by using the Hello request as described in

. The server MUST respond by returning a Greeting response, as defined in

.

•

•

•

Section 2 of [RFC5730]

Section 2.3 of

[RFC5730]

Section 2.4 of [RFC5730]

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 12

https://rfc-editor.org/rfc/rfc5730#section-2
https://rfc-editor.org/rfc/rfc5730#section-2.3
https://rfc-editor.org/rfc/rfc5730#section-2.4

The version value used in the Hello response MUST match the version value used for the

{version} path segment in the URL used for the Hello request.

Example request:

Example response:

C: OPTIONS /repp/v1/ HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept: application/epp+xml

C: Accept-Language: en

C: Connection: keep-alive

S: HTTP/2 200 OK

S: Date: Wed, 24 Jan 2024 12:00:00 UTC

S: Server: Example REPP server v1.0

S: Content-Length: 799

S: Content-Type: application/epp+xml

S: Content-Language: en

S:

S: <?xml version="1.0" encoding="UTF-8" standalone="no"?>

S: <repp xmlns="urn:ietf:params:xml:ns:repp-1.0">

S: <greeting>

S: <svcMenu>

S: <version>1.0</version>

S: <!-- The rest of the response is omitted here -->

S: <svcMenu>

S: </greeting>

S: </repp>

9.2. Login

The Login command defined in is used to establish a session

between client and server, this is part of the stateful nature of the EPP protocol. REPP is

stateless and MUST NOT maintain any client state and does not include a Login command.

The client MUST include all information in a REPP request, required for the server to be

able to properly process the request. This includes request attributes defined as for Login

command in .

The request attributes from the Login command, used for configuring the client session,

are moved to the HTTP layer.

clID: Replaced by HTTP authentication

pw:: Replaced by HTTP authentication

newPW: Replaced by out of band process

version: Replaced by the {version} path parameter in the request URL.

lang: Replaced by the Accept-Language HTTP header.

Section 2.9.1.1 of [RFC5730]

Section 2.9.1.1 of [RFC5730]

•

•

•

•

•

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 13

https://rfc-editor.org/rfc/rfc5730#section-2.9.1.1
https://rfc-editor.org/rfc/rfc5730#section-2.9.1.1

svcs: Replaced by the REPP-Svcs HTTP header.

svcExtension: Replaced by the REPP-Svcs-Ext HTTP header.

The server MUST check the namespaces used in the REPP-Svcs HTTP header. An

unsupported namespace MUST result in the appropriate EPP result code.

•

•

9.3. Logout

Due to the stateless nature of REPP, the session concept is no longer used and therefore

the Logout command MUST NOT be implemented by the server.

9.4. Query Resources

A REPP client MAY use the HTTP GET method for executing a query command only when no

request data has to be added to the HTTP message body. Sending content using an HTTP

GET request is discouraged in , there exists no generally defined semantics for

content received in a GET request. When an EPP object requires additional authInfo

information, as described in and , the client MUST use the HTTP

POST method and add the query command content to the HTTP message body.

[RFC9110]

[RFC5731] [RFC5733]

9.4.1. Check

Request: HEAD /{collection}/{id}

Request message: None

Response message: None

The HTTP HEAD method MUST be used for object existence check. The response MUST

contain the REPP-Check-Avail header and MAY contain the REPP-Check-Reason header. The

value of the REPP-Check-Avail header MUST be "0" or "1" as described in

, depending on whether the object can be provisioned or not.

The Check endpoint MUST be limited to checking only a single object-id per request. This

may seem a limitation compared to the Check command defined in where a

Check message may contain multiple object-ids. The REPP Check request can be load

balanced more efficiently when only a single object-id has to be checked.

Example request for a domain name:

Example response:

•

•

•

Section 2.9.2.1 of

[RFC5730]

[RFC5730]

C: HEAD /repp/v1/domains/example.nl HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept-Language: en

C: REPP-Cltrid: ABC-12345

C: REPP-Svcs: urn:ietf:params:xml:ns:domain-1.0

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 14

https://rfc-editor.org/rfc/rfc5730#section-2.9.2.1

S: HTTP/2 200 OK

S: Date: Wed, 24 Jan 2024 12:00:00 UTC

S: Server: Example REPP server v1.0

S: REPP-Cltrid: ABC-12345

S: REPP-Svtrid: XYZ-12345

S: REPP-Check-Avail: 0

S: REPP-Check-Reason: In use

S: REPP-result-code: 1000

s: Content-Length: 0

9.4.2. Info

The Object Info request MUST use the HTTP GET method on a resource identifying an

object instance, using an empty message body. If the object has authorization information

attached and the authorization then the client MUST include the REPP-AuthInfo HTTP

header. If the authorization is linked to a database object the client MUST include the REPP-

Roid header.

Example request for an object not using authorization information.

Request: GET /{collection}/{id}

Request message: Optional

Response message: Info response

Example request using REPP-AuthInfo header for an object that has attached authorization

information.

Request: GET /{collection}/{id}

Request message: Optional

Response message: Info response

•

•

•

C: GET /repp/v1/domains/example.nl HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept: application/epp+xml

C: Accept-Language: en

C: REPP-Cltrid: ABC-12345

C: REPP-Svcs: urn:ietf:params:xml:ns:domain-1.0

•

•

•

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 15

Example Info response:

C: GET /repp/v1/domains/example.nl HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept: application/epp+xml

C: Accept-Language: en

C: REPP-Cltrid: ABC-12345

C: REPP-AuthInfo: secret-token

C: REPP-Roid: REG-XYZ-12345

C: REPP-Svcs: urn:ietf:params:xml:ns:domain-1.0

S: HTTP/2 200 OK

S: Date: Wed, 24 Jan 2024 12:00:00 UTC

S: Server: Example REPP server v1.0

S: Content-Length: 424

S: Content-Type: application/epp+xml

S: Content-Language: en

S: REPP-Eppcode: 1000

S:

S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

S:<repp xmlns="urn:ietf:params:xml:ns:repp-1.0">

S: <response>

S: <result code="1000">

S: <msg>Command completed successfully</msg>

S: </result>

S: <resData>

S: <domain:infData xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">

S: < !-- The rest of the response is omitted here -- >

S: </domain:infData>

S: </resData>

S: <trID>

S: <clTRID>ABC-12345</clTRID>

S: <svTRID>XYZ-12345</svTRID>

S: </trID>

S: </response>

S:</repp>

9.4.2.1. Object Filtering

The server MUST support the use of the filter and val query parameters for the purpose of

limiting the number of objects in a response.

filter: The attribute or field name to apply the filter on

val: The value used for filtering

•

•

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 16

The Domain Name Mapping Section 3.1.2 describes an optional "hosts" attribute for the

Domain Info command. This attribute may be used for filtering hosts returned in the Info

response, and is mapped to the filter and val query parameters. If the filtering query

parameters are absent from the request URL, the server MUST use the default filter value

described in the corresponding EPP RFCs.

URLs used for filtering based on hosts attribute for Domain Info request:

default: GET /domains/{id}

all: GET /domains/{id}?filter=hosts&val=all

del: GET /domains/{id}?filter=hosts&val=del

sub: GET /domains/{id}?filter=hosts&val=sub

none: GET /domains/{id}?filter=hosts&val=none

Example Domain Info request, the response should only include delegated hosts:

•

•

•

•

•

C: GET /repp/v1/domains/example.nl?filter=hosts&val=del HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept: application/epp+xml

C: Accept-Language: en

C: REPP-Cltrid: ABC-12345

C: REPP-Svcs: urn:ietf:params:xml:ns:domain-1.0

9.4.3. Poll

9.4.3.1. Poll Request

Request: GET /messages

Request message: None

Response message: Poll response

The client MUST use the HTTP GET method on the messages resource collection to request

the message at the head of the queue. The "op=req" semantics from Section 2.9.2.3 are

assigned to the HTTP GET method.

Example request:

Example response:

•

•

•

C: GET /repp/v1/messages HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept: application/epp+xml

C: Accept-Language: en

C: REPP-Cltrid: ABC-12345

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 17

https://rfc-editor.org/rfc/rfc5731#appendix-Section%203.1.2
https://rfc-editor.org/rfc/rfc5730#appendix-Section%202.9.2.3

S: HTTP/2 200 OK

S: Date: Wed, 24 Jan 2024 12:00:00 UTC

S: Server: Example REPP server v1.0

S: Content-Length: 312

S: Content-Type: application/epp+xml

S: Content-Language: en

S: REPP-Eppcode: 1301

S:

S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

S:<repp xmlns="urn:ietf:params:xml:ns:repp-1.0">

S: <response>

S: <result code="1301">

S: <msg>Command completed successfully; ack to dequeue</msg>

S: </result>

S: <msgQ count="5" id="12345">

S: <qDate>2000-06-08T22:00:00.0Z</qDate>

S: <msg>Transfer requested.</msg>

S: </msgQ>

S: <resData>

S: <!-- The rest of the response is omitted here -->

S: </resData>

S: <trID>

S: <clTRID>ABC-12345</clTRID>

S: <svTRID>XYZ-12345</svTRID>

S: </trID>

S: </response>

S:</repp>

9.4.3.2. Poll Ack

Request: DELETE /messages/{id}

Request message: None

Response message: Poll Ack response

The client MUST use the HTTP DELETE method to acknowledge receipt of a message from

the queue. The "op=ack" semantics from Section 2.9.2.3 are assigned to the HTTP DELETE

method. The "msgID" attribute of a received EPP Poll message MUST be included in the

message resource URL, using the {id} path element. The server MUST use REPP headers to

return the EPP result code and the number of messages left in the queue. The server MUST

NOT add content to the HTTP message body of a successful response, the server may add

content to the message body of an error response.

Example request:

•

•

•

C: DELETE /repp/v1/messages/12345 HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept: application/epp+xml

C: Accept-Language: en

C: REPP-Cltrid: ABC-12345

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 18

https://rfc-editor.org/rfc/rfc5730#appendix-Section%202.9.2.3

Example response:

S: HTTP/2 200 OK

S: Date: Wed, 24 Jan 2024 12:00:00 UTC

S: Server: Example REPP server v1.0

S: Content-Language: en

S: REPP-Eppcode: 1000

S: REPP-Queue-Size: 0

S: REPP-Svtrid: XYZ-12345

S: REPP-Cltrid: ABC-12345

S: Content-Length: 145

S:

S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

S:<repp xmlns="urn:ietf:params:xml:ns:repp-1.0">

S: <response>

S: <result code="1000">

S: <msg>Command completed successfully</msg>

S: </result>

S: <msgQ count="0" id="12345"/>

S: <trID>

S: <clTRID>ABC-12345</clTRID>

S: <svTRID>XYZ-12345</svTRID>

S: </trID>

S: </response>

S:</repp>

9.4.4. Transfer Query

The Transfer Query request MUST use the special "latest" sub-resource to refer to the

latest object transfer. A latest transfer object may not exist, when no transfer has been

initiated for the specified object. The "op=query" semantics from Section 2.9.3.4 are

assigned to the HTTP GET method. The client MUST use the HTTP GET method and MUST

NOT add content to the HTTP message body.

Request: GET {collection}/{id}/transfers/latest

Request message: Optional

Response message: Transfer Query response

Example domain name Transfer Query request without authorization information required:

•

•

•

C: GET /repp/v1/domains/example.nl/transfers/latest HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept: application/epp+xml

C: Accept-Language: en

C: REPP-Cltrid: ABC-12345

C: REPP-Svcs: urn:ietf:params:xml:ns:domain-1.0

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 19

https://rfc-editor.org/rfc/rfc5730#appendix-Section%202.9.3.4

If the requested object has associated authorization information that is not linked to

another database object, then the HTTP GET method MUST be used and the authorization

information MUST be included using the REPP-AuthInfo header.

Example domain name Transfer Query request using REPP-AuthInfo header:

If the requested object has associated authorization information linked to another database

object, then the HTTP GET method MUST be used and both the REPP-AuthInfo and the

REPP-Roid header MUST be included.

Example domain name Transfer Query request and authorization using REPP-AuthInfo and

the REPP-Roid header:

Example Transfer Query response:

C: GET /repp/v1/domains/example.nl/transfers/latest HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept: application/epp+xml

C: Accept-Language: en

C: REPP-Cltrid: ABC-12345

C: REPP-AuthInfo: secret-token

C: REPP-Svcs: urn:ietf:params:xml:ns:domain-1.0

C: GET /repp/v1/domains/example.nl/transfers/latest HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept: application/epp+xml

C: Accept-Language: en

C: REPP-AuthInfo: secret-token

C: REPP-Roid: REG-XYZ-12345

C: Content-Length: 0

C:

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 20

S: HTTP/2 200 OK

S: Date: Wed, 24 Jan 2024 12:00:00 UTC

S: Server: Example REPP server v1.0

S: Content-Length: 230

S: Content-Type: application/epp+xml

S: Content-Language: en

S: REPP-Eppcode: 1000

S:

S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

S:<repp xmlns="urn:ietf:params:xml:ns:repp-1.0">

S: <response>

S: <result code="1000">

S: <msg>Command completed successfully</msg>

S: </result>

S: <resData>

S: <!-- The rest of the response is omitted here -->

S: </resData>

S: <trID>

S: <clTRID>ABC-12345</clTRID>

S: <svTRID>XYZ-12345</svTRID>

S: </trID>

S: </response>

S:</repp>

9.5. Transform Resources

9.5.1. Create

Request: POST /{collection}

Request message: Object Create request

Response message: Object Create response

The client MUST use the HTTP POST method to create a new object resource. If the EPP

request results in a newly created object, then the server MUST return HTTP status code

200 (OK). The server MUST add the "Location" header to the response, the value of this

header MUST be the URL for the newly created resource.

Example Domain Create request:

•

•

•

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 21

Example Domain Create response:

C: POST /repp/v1/domains HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept: application/epp+xml

C: Content-Type: application/epp+xml

C: REPP-Svcs: urn:ietf:params:xml:ns:domain-1.0

C: Accept-Language: en

C: Content-Length: 220

C:

C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

C:<repp xmlns="urn:ietf:params:xml:ns:repp-1.0">

C: <request>

C: <body>

C: <domain:create

C: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">

C: <domain:name>example.nl</domain:name>

C: <!-- The rest of the request is omitted here -->

C: </domain:create>

C: </body>

C: <clTRID>ABC-12345</clTRID>

C: </request>

C:</repp>

S: HTTP/2 200

S: Date: Wed, 24 Jan 2024 12:00:00 UTC

S: Server: Example REPP server v1.0

S: Content-Language: en

S: Content-Length: 642

S: Content-Type: application/epp+xml

S: Location: https://repp.example.nl/repp/v1/domains/example.nl

S: REPP-Eppcode: 1000

S:

S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

S:<repp xmlns="urn:ietf:params:xml:ns:repp-1.0"

S: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">

S: <response>

S: <result code="1000">

S: <msg>Command completed successfully</msg>

S: </result>

S: <resData>

S: <domain:creData>

S: <!-- The rest of the response is omitted here -->

S: </domain:creData>

S: </resData>

S: <trID>

S: <clTRID>ABC-12345</clTRID>

S: <svTRID>XYZ-12345</svTRID>

S: </trID>

S: </response>

S:</repp>

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 22

9.5.2. Delete

Request: DELETE /{collection}/{id}

Request message: Optional

Response message: Status

The client MUST the HTTP DELETE method and a resource identifying a unique object

instance. The server MUST return HTTP status code 200 (OK) if the resource was deleted

successfully.

Example Domain Delete request:

Example Domain Delete response:

•

•

•

C: DELETE /repp/v1/domains/example.nl HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept: application/epp+xml

C: Accept-Language: en

C: REPP-Cltrid: ABC-12345

S: HTTP/2 200 OK

S: Date: Wed, 24 Jan 2024 12:00:00 UTC

S: Server: Example REPP server v1.0

S: Content-Length: 80

S: REPP-Svtrid: XYZ-12345

S: REPP-Cltrid: ABC-12345

S: REPP-Eppcode: 1000

S:

S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

S:<repp xmlns="urn:ietf:params:xml:ns:repp-1.0">

S: <response>

S: <result code="1000">

S: <msg>Command completed successfully</msg>

S: </result>

S: <trID>

S: <clTRID>ABC-12345</clTRID>

S: <svTRID>XYZ-12345</svTRID>

S: </trID>

S: </response>

S:</repp>

9.5.3. Renew

Request: POST /{collection}/{id}/renewals

Request message: Optional

Response message: Renew response

•

•

•

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 23

The Renew command is mapped to a nested collection, named "renewals". Not all EPP

object types include support for the renew command. The current-date query parameter

MAY be used for date on which the current validity period ends, as described in

. The new period MAY be added to the request using the unit and value

request parameters. The response MUST include the Location header for the renewed

object.

Example Domain Renew request:

Example Domain Renew request, using 1 year period:

Example Renew response:

Section

3.2.3 of [RFC5731]

C: POST /repp/v1/domains/example.nl/renewals?current-date=2024-01-01 HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept: application/epp+xml

C: Content-Type: application/epp+xml

C: REPP-Svcs: urn:ietf:params:xml:ns:domain-1.0

C: Accept-Language: en

C: Content-Length: 0

C:

C: POST /repp/v1/domains/example.nl/renewals?current-date=2024-01-01?

unit=y&value=1 HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept: application/epp+xml

C: Content-Type: application/epp+xml

C: REPP-Svcs: urn:ietf:params:xml:ns:domain-1.0

C: Accept-Language: en

C: Content-Length: 0

C:

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 24

https://rfc-editor.org/rfc/rfc5731#section-3.2.3
https://rfc-editor.org/rfc/rfc5731#section-3.2.3

S: HTTP/2 200 OK

S: Date: Wed, 24 Jan 2024 12:00:00 UTC

S: Server: Example REPP server v1.0

S: Content-Language: en

S: Content-Length: 205

S: Location: https://repp.example.nl/repp/v1/domains/example.nl

S: Content-Type: application/epp+xml

S: REPP-Eppcode: 1000

S:

S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

S:<repp xmlns="urn:ietf:params:xml:ns:repp-1.0">

S: <response>

S: <result code="1000">

S: <msg>Command completed successfully</msg>

S: </result>

S: <resData>

S: <!-- The rest of the response is omitted here -->

S: </resData>

S: <trID>

S: <clTRID>ABC-12345</clTRID>

S: <svTRID>XYZ-12345</svTRID>

S: </trID>

S: </response>

S:</repp>

9.5.4. Transfer

Transferring an object from one sponsoring client to another client is specified in

and . The Transfer command is mapped to a nested resource, named "transfers".

The semantics of the HTTP DELETE method are determined by the role of the client

executing the DELETE method. The DELETE method is defined as "reject transfer" for the

current sponsoring client of the object. For the new sponsoring client the DELETE method is

defined as "cancel transfer".

[RFC5731]

[RFC5733]

9.5.4.1. Request

Request: POST /{collection}/{id}/transfers

Request message: Optional

Response message: Status

The "op=request" semantics from Section 2.9.3.4 are assigned to the HTTP POST method.

In order to initiate a new object transfer process, the client MUST use the HTTP POST

method on a unique resource to create a new transfer resource object. Not all EPP objects

support the Transfer command as described in ,

 and .

If the transfer request is successful, then the response MUST include the Location header

for the object being transferred.

Example request not using object authorization:

•

•

•

Section 3.2.4 of [RFC5730] Section 3.2.4 of

[RFC5731] Section 3.2.4 of [RFC5733]

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 25

https://rfc-editor.org/rfc/rfc5730#appendix-Section%202.9.3.4
https://rfc-editor.org/rfc/rfc5730#section-3.2.4
https://rfc-editor.org/rfc/rfc5731#section-3.2.4
https://rfc-editor.org/rfc/rfc5733#section-3.2.4

Example request using object authorization:

Example request using 1 year renewal period, using the unit and value query parameters:

Example Transfer response:

C: POST /repp/v1/domains/example.nl/transfers HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept: application/epp+xml

C: REPP-Svcs: urn:ietf:params:xml:ns:domain-1.0

C: Accept-Language: en

C: REPP-Cltrid: ABC-12345

C: Content-Length: 0

C: POST /repp/v1/domains/example.nl/transfers HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept: application/epp+xml

C: REPP-Svcs: urn:ietf:params:xml:ns:domain-1.0

C: REPP-Cltrid: ABC-12345

C: REPP-AuthInfo: secret-token

C: Accept-Language: en

C: Content-Length: 0

C: POST /repp/v1/domains/example.nl/transfers?unit=y&value=1 HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept: application/epp+xml

C: REPP-Svcs: urn:ietf:params:xml:ns:domain-1.0

C: Accept-Language: en

C: REPP-Cltrid: ABC-12345

C: Content-Length: 0

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 26

S: HTTP/2 200 OK

S: Date: Wed, 24 Jan 2024 12:00:00 UTC

S: Server: Example REPP server v1.0

S: Content-Language: en

S: Content-Length: 328

S: Content-Type: application/epp+xml

S: Location: https://repp.example.nl/repp/v1/domains/example.nl/transfers/latest

S: REPP-Eppcode: 1001

S:

S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

S:<repp xmlns="urn:ietf:params:xml:ns:repp-1.0">

S: <response>

S: <result code="1001">

S: <msg>Command completed successfully; action pending</msg>

S: </result>

S: <resData>

S: <!-- The rest of the response is omitted here -->

S: </resData>

S: <trID>

S: <clTRID>ABC-12345</clTRID>

S: <svTRID>XYZ-12345</svTRID>

S: </trID>

S: </response>

S:</repp>

9.5.4.2. Cancel

Request: DELETE /{collection}/{id}/transfers/latest

Request message: Optional

Response message: Status

The "op=cancel" semantics from Section 2.9.3.4 are assigned to the HTTP DELETE method.

The new sponsoring client MUST use the HTTP DELETE method to cancel a requested

transfer.

Example request:

Example response:

•

•

•

C: DELETE /repp/v1/domains/example.nl/transfers/latest HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept: application/epp+xml

C: Accept-Language: en

C: REPP-Cltrid: ABC-12345

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 27

https://rfc-editor.org/rfc/rfc5730#appendix-Section%202.9.3.4

S: HTTP/2 200 OK

S: Date: Wed, 24 Jan 2024 12:00:00 UTC

S: Server: Example REPP server v1.0

S: Content-Length: 80

S: REPP-Svtrid: XYZ-12345

S: REPP-Cltrid: ABC-12345

S: REPP-Eppcode: 1000

S:

S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

S:<repp xmlns="urn:ietf:params:xml:ns:repp-1.0">

S: <response>

S: <result code="1000">

S: <msg>Command completed successfully</msg>

S: </result>

S: <trID>

S: <clTRID>ABC-12345</clTRID>

S: <svTRID>XYZ-12345</svTRID>

S: </trID>

S: </response>

S:</repp>

9.5.4.3. Reject

Request: DELETE /{collection}/{id}/transfers/latest

Request message: None

Response message: Status

The "op=reject" semantics from Section 2.9.3.4 are assigned to the HTTP DELETE method.

The currently sponsoring client of the object MUST use the HTTP DELETE method to reject

a started transfer process.

Example request:

Example Reject response:

•

•

•

C: DELETE /repp/v1/domains/example.nl/transfers/latest HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept: application/epp+xml

C: Accept-Language: en

C: REPP-Cltrid: ABC-12345

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 28

https://rfc-editor.org/rfc/rfc5730#appendix-Section%202.9.3.4

S: HTTP/2 200 OK

S: Date: Wed, 24 Jan 2024 12:00:00 UTC

S: Server: Example REPP server v1.0

S: Content-Length: 80

S: REPP-Svtrid: XYZ-12345

S: REPP-Cltrid: ABC-12345

S: REPP-Eppcode: 1000

S:

S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

S:<repp xmlns="urn:ietf:params:xml:ns:repp-1.0">

S: <response>

S: <result code="1000">

S: <msg>Command completed successfully</msg>

S: </result>

S: <trID>

S: <clTRID>ABC-12345</clTRID>

S: <svTRID>XYZ-12345</svTRID>

S: </trID>

S: </response>

S:</repp>

9.5.4.4. Approve

Request: PUT /{collection}/{id}/transfers/latest

Request message: Optional

Response message: Status

The "op=approve" semantics from Section 2.9.3.4 are assigned to the HTTP PUT method.

The currently sponsoring client MUST use the HTTP PUT method to approve a transfer

requested by the new sponsoring client.

Example Approve request:

Example Approve response:

•

•

•

C: PUT /repp/v1/domains/example.nl/transfers/latest HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept: application/epp+xml

C: Accept-Language: en

C: REPP-Cltrid: ABC-12345

C: Content-Length: 0

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 29

https://rfc-editor.org/rfc/rfc5730#appendix-Section%202.9.3.4

S: HTTP/2 200 OK

S: Date: Wed, 24 Jan 2024 12:00:00 UTC

S: Server: Example REPP server v1.0

S: Content-Length: 80

S: REPP-Svtrid: XYZ-12345

S: REPP-Cltrid: ABC-12345

S: REPP-Eppcode: 1000

S:

S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

S:<repp xmlns="urn:ietf:params:xml:ns:repp-1.0">

S: <response>

S: <result code="1000">

S: <msg>Command completed successfully</msg>

S: </result>

S: <trID>

S: <clTRID>ABC-12345</clTRID>

S: <svTRID>XYZ-12345</svTRID>

S: </trID>

S: </response>

S:</repp>

9.5.5. Update

Request: PATCH /{collection}/{id}

Request message: Object Update message

Response message: Status

An object Update request MUST be performed using the HTTP PATCH method. The request

message body MUST contain an EPP Update request, and the object-id value in the request

MUST match the value of the object-id path parameter in the URL.

Example request:

•

•

•

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 30

Example response:

C: PATCH /repp/v1/domains/example.nl HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept: application/epp+xml

C: Content-Type: application/epp+xml

C: Accept-Language: en

C: REPP-Svcs: urn:ietf:params:xml:ns:domain-1.0

C: Content-Length: 252

C:

C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

C:<repp xmlns="urn:ietf:params:xml:ns:repp-1.0">

C: <request>

C: <body>

C: <domain:update

C: xmlns:domain="urn:ietf:params:xml:ns:domain-1.0">

C: <domain:name>example.nl</domain:name>

C: <!-- The rest of the request is omitted here -->

C: </domain:update>

C: </body>

C: <clTRID>ABC-12345</clTRID>

C: </request>

C:</repp>

S: HTTP/2 200 OK

S: Date: Wed, 24 Jan 2024 12:00:00 UTC

S: Server: Example REPP server v1.0

S: Content-Length: 80

S: REPP-Svtrid: XYZ-12345

S: REPP-Cltrid: ABC-12345

S: REPP-Eppcode: 1000

S:

S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

S:<repp xmlns="urn:ietf:params:xml:ns:repp-1.0">

S: <response>

S: <result code="1000">

S: <msg>Command completed successfully</msg>

S: </result>

S: <trID>

S: <clTRID>ABC-12345</clTRID>

S: <svTRID>XYZ-12345</svTRID>

S: </trID>

S: </response>

S:</repp>

9.6. Extension Framework

The EPP Extension Framework allows for extending the EPP protocol at different locations,

REPP defines additional REST resources for the Protocol and Command-Response

extensions.

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 31

9.6.1. Protocol Extension

Request: * /extensions/*

Request message: *

Response message: *

EPP Protocol extensions, defined in are supported using the "/

extensions" root resource. The HTTP method used for a new Protocol extension is not

defined but must follow the RESTful principles.

The example below, illustrates the use of the "Domain Cancel Delete" command as defined

as a custom command in . The new command is created below the "extensions"

path element and after this element follows the "domains" object collection, finally a

special "deletion" path element is added to the end of the URL. A client MUST use the HTPP

DELETE method on a domain name deletion resource to cancel an ongoing domain delete

transaction and move the domain from the grace state back to the active state.

Example Protocol Extension request:

Request: DELETE /extensions/{collection}/{id}/deletion

Request message: Optional

Response message: Optional error response

Example response:

•

•

•

Section 2.7.1 of [RFC5730]

[SIDN-EXT]

•

•

•

C: DELETE /repp/v1/extensions/domains/example.nl/deletion HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept: application/epp+xml

C: Accept-Language: en

C: REPP-Svcs: urn:ietf:params:xml:ns:domain-1.0

C: REPP-Svcs-Ext: https://rxsd.domain-registry.nl/sidn-ext-epp-1.0

C: REPP-Cltrid: ABC-12345

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 32

https://rfc-editor.org/rfc/rfc5730#section-2.7.1

S: HTTP/2 200 OK

S: Date: Wed, 24 Jan 2024 12:00:00 UTC

S: Server: Example REPP server v1.0

S: Content-Language: en

S: Content-Length: 0

S: REPP-Svtrid: XYZ-12345

S: REPP-Cltrid: ABC-12345

S: REPP-Eppcode: 1000

S:

S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

S:<repp xmlns="urn:ietf:params:xml:ns:repp-1.0">

S: <response>

S: <result code="1000">

S: <msg>Command completed successfully</msg>

S: </result>

S: <trID>

S: <clTRID>ABC-12345</clTRID>

S: <svTRID>XYZ-12345</svTRID>

S: </trID>

S: </response>

S:</repp>

9.6.2. Object Extension

An Object extension is differs from the other 2 extension types in the way that an Object

extension is implemented using a new Object mapping for a new Object type, while re-

using the existing EPP command and response structures. The newly created Object

mapping, is similar to the existing Object mappings defined in , and

, and MUST be used in a similar fashion.

A hypothetical new Object mapping for IP addresses, may result in a new resource

collection named "ips", the semantics for the HTTP methods would have to be defined.

Creating a new IP address may use the HTTP POST method on the "ips" collection.

Request: POST /{collection}/{id}

Request message: IP Create Request message

Response message: IP Create Response message

Example request:

[RFC5731] [RFC5732]

[RFC5733]

•

•

•

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 33

Example response:

C: POST /repp/v1/ips HTTP/2

C: Host: repp.example.nl

C: Authorization: Bearer <token>

C: Accept: application/epp+xml

C: Accept-Language: en

C: REPP-Svcs-Ext: https://example.nl/epp-ips-1.0

C: REPP-Cltrid: ABC-12345

C: Content-Type: application/epp+xml

C: Content-Length: 220

C:

C:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

C:<repp xmlns="urn:ietf:params:xml:ns:repp-1.0">

C: <request>

C: <body>

C: <ip:create

C: xmlns:ip="https://example.nl/epp-ip-1.0">

C: <ip:address>192.0.2.1</ip:address>

C: <!-- The rest of the request is omitted here -->

C: </ip:create>

C: </body>

C: <clTRID>ABC-12345</clTRID>

C: </request>

C:</repp>

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 34

S: HTTP/2 200 OK

S: Date: Wed, 24 Jan 2024 12:00:00 UTC

S: Server: Example REPP server v1.0

S: Content-Language: en

S: Content-Length: 642

S: Content-Type: application/epp+xml

S: Location: https://repp.example.nl/repp/v1/ips/192.0.2.1

S: REPP-Eppcode: 1000

S:

S:<?xml version="1.0" encoding="UTF-8" standalone="no"?>

S:<repp xmlns="urn:ietf:params:xml:ns:repp-1.0"

S: xmlns:ip="https://example.nl/epp-ip-1.0">

S: <response>

S: <result code="1000">

S: <msg>Command completed successfully</msg>

S: </result>

S: <resData>

S: <ip:creData>

S: <!-- The rest of the response is omitted here -->

S: </ip:creData>

S: </resData>

S: <trID>

S: <clTRID>ABC-12345</clTRID>

S: <svTRID>XYZ-12345</svTRID>

S: </trID>

S: </response>

S:</repp>

9.6.3. Command-Response Extension

Command-Response Extensions allow for adding elements to an existing object mapping,

therefore no new extension resource is required, the existing resources can be used for

existing and future extensions of this type.

10. Protocol Considerations

 of the EPP protocol specification describes considerations to be

addressed by a transport or protocol mapping. These are satisfied by a combination of

REPP features and features provided by HTTP protocol and underlying transport protocols,

as described below.

The consideration: "The transport mapping MUST preserve the stateful nature of the

protocol", is updated to: "The transport mapping MUST preserve the stateful nature of

the protocol, when using a stateful transport protocol". REPP uses the REST

architectural style for defining a stateless API based on the stateless HTTP protocol,

and therefore satisfies the updated consideration.

Section 8 describes how HTTP multiplexing may be used for pipelining multiple

requests. A server may allow pipelining, requests are to be processed in the order they

have been received.

REPP is based on the HTTP protocol, which uses the client-server model.

Section 2.1 of [RFC5730]

•

•

•

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 35

https://rfc-editor.org/rfc/rfc5730#section-2.1

REPP messages are transmitted using HTTP, this document refers to the HTTP

 protocol specification for how data units are framed.

HTTP/1 and HTTP/2 use TCP as a transport protocol and this includes features to

provide reliability, flow control, ordered delivery, and congestion control

 describes these features in detail; congestion control principles are described

further in and . HTTP/3 uses QUIC (UDP) as a transport protocol,

which has built-in congestion control over UDP.

Section 8 describes how requests are processed independently of each other.

Errors while processing a REPP request are isolated to this request and do not affect

other requests sent by the client or other clients, this is described in Section 8.5.

Batch-oriented processing (combining multiple EPP commands in a single HTTP

request) is not permitted. To maximize scalability every request must contain a single

command, as described in Section 8.

•

[RFC2616]

•

Section 1.5 of

[RFC793]

[RFC2581] [RFC2914]

•

•

•

11. Formal Syntax

This section contains the XML Schema notation defined for REPP, based on the XML schema

defined in . The XML schema defined in contains XML elements and

attributes that are no longer required in a REPP context.

The following changes have been made:

deleted hello from eppType

renamed command to request in eppType

deleted choice and all child elements from commandtype

renamed commandtype to requestType

renamed readWriteType to bodyType

created body element for requestType

deleted loginType

deleted credsOptionsType

deleted loginSvcType

deleted pwType

deleted pollType

deleted transferType

deleted transferOpType

The formal syntax presented here is a complete schema representation of REPP suitable for

automated validation of REPP XML instances.

[RFC5730] [RFC5730]

•

•

•

•

•

•

•

•

•

•

•

•

•

<?xml version="1.0" encoding="UTF-8"?>

<schema targetNamespace="urn:ietf:params:xml:ns:repp-1.0"

xmlns:repp="urn:ietf:params:xml:ns:repp-1.0"

xmlns:eppcom="urn:ietf:params:xml:ns:eppcom-1.0"

xmlns="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

 <!--

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 36

https://rfc-editor.org/rfc/rfc793#section-1.5

 Import common element types.

 -->

 <import namespace="urn:ietf:params:xml:ns:eppcom-1.0"/>

 <annotation>

 <documentation>

 RESTful Extensible Provisioning Protocol v1.0 schema.

 </documentation>

 </annotation>

 <!--

 Every EPP XML instance must begin with this element.

 -->

 <element name="repp" type="repp:eppType"/>

 <!--

 An EPP XML instance must contain a greeting, request, response, or extension.

 -->

 <complexType name="eppType">

 <choice>

 <element name="greeting" type="repp:greetingType"/>

 <element name="request" type="repp:requestType"/>

 <element name="response" type="repp:responseType"/>

 <element name="extension" type="repp:extAnyType"/>

 </choice>

 </complexType>

 <!--

 A greeting is sent by a server in response to a client connection

 or <hello>.

 -->

 <complexType name="greetingType">

 <sequence>

 <element name="svID" type="repp:sIDType"/>

 <element name="svDate" type="dateTime"/>

 <element name="svcMenu" type="repp:svcMenuType"/>

 <element name="dcp" type="repp:dcpType"/>

 </sequence>

 </complexType>

 <!--

 Server IDs are strings with minimum and maximum length restrictions.

 -->

 <simpleType name="sIDType">

 <restriction base="normalizedString">

 <minLength value="3"/>

 <maxLength value="64"/>

 </restriction>

 </simpleType>

 <!--

 A server greeting identifies available object services.

 -->

 <complexType name="svcMenuType">

 <sequence>

 <element name="version" type="repp:versionType"

 maxOccurs="unbounded"/>

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 37

 <element name="lang" type="language"

 maxOccurs="unbounded"/>

 <element name="objURI" type="anyURI"

 maxOccurs="unbounded"/>

 <element name="svcExtension" type="repp:extURIType"

 minOccurs="0"/>

 </sequence>

 </complexType>

 <!--

 Data Collection Policy types.

 -->

 <complexType name="dcpType">

 <sequence>

 <element name="access" type="repp:dcpAccessType"/>

 <element name="statement" type="repp:dcpStatementType"

 maxOccurs="unbounded"/>

 <element name="expiry" type="repp:dcpExpiryType"

 minOccurs="0"/>

 </sequence>

 </complexType>

 <complexType name="dcpAccessType">

 <choice>

 <element name="all"/>

 <element name="none"/>

 <element name="null"/>

 <element name="other"/>

 <element name="personal"/>

 <element name="personalAndOther"/>

 </choice>

 </complexType>

 <complexType name="dcpStatementType">

 <sequence>

 <element name="purpose" type="repp:dcpPurposeType"/>

 <element name="recipient" type="repp:dcpRecipientType"/>

 <element name="retention" type="repp:dcpRetentionType"/>

 </sequence>

 </complexType>

 <complexType name="dcpPurposeType">

 <sequence>

 <element name="admin"

 minOccurs="0"/>

 <element name="contact"

 minOccurs="0"/>

 <element name="other"

 minOccurs="0"/>

 <element name="prov"

 minOccurs="0"/>

 </sequence>

 </complexType>

 <complexType name="dcpRecipientType">

 <sequence>

 <element name="other"

 minOccurs="0"/>

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 38

 <element name="ours" type="repp:dcpOursType"

 minOccurs="0" maxOccurs="unbounded"/>

 <element name="public"

 minOccurs="0"/>

 <element name="same"

 minOccurs="0"/>

 <element name="unrelated"

 minOccurs="0"/>

 </sequence>

 </complexType>

 <complexType name="dcpOursType">

 <sequence>

 <element name="recDesc" type="repp:dcpRecDescType"

 minOccurs="0"/>

 </sequence>

 </complexType>

 <simpleType name="dcpRecDescType">

 <restriction base="token">

 <minLength value="1"/>

 <maxLength value="255"/>

 </restriction>

 </simpleType>

 <complexType name="dcpRetentionType">

 <choice>

 <element name="business"/>

 <element name="indefinite"/>

 <element name="legal"/>

 <element name="none"/>

 <element name="stated"/>

 </choice>

 </complexType>

 <complexType name="dcpExpiryType">

 <choice>

 <element name="absolute" type="dateTime"/>

 <element name="relative" type="duration"/>

 </choice>

 </complexType>

 <!--

 Extension framework types.

 -->

 <complexType name="extAnyType">

 <sequence>

 <any namespace="##other"

 maxOccurs="unbounded"/>

 </sequence>

 </complexType>

 <complexType name="extURIType">

 <sequence>

 <element name="extURI" type="anyURI"

 maxOccurs="unbounded"/>

 </sequence>

 </complexType>

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 39

 <!--

 An EPP version number is a dotted pair of decimal numbers.

 -->

 <simpleType name="versionType">

 <restriction base="token">

 <pattern value="[1-9]+\.[0-9]+"/>

 <enumeration value="1.0"/>

 </restriction>

 </simpleType>

 <!--

 Request type, reduced to a single <body> element for object-data.

 -->

<complexType name="requestType">

 <sequence>

 <element name="body" type="repp:bodyType"/>

 <element name="extension" type="repp:extAnyType"

 minOccurs="0"/>

 <element name="clTRID" type="repp:trIDStringType"

 minOccurs="0"/>

 </sequence>

</complexType>

 <!--

 All other object-centric request bodies. EPP doesn't specify the syntax or

 semantics of object-centric body elements.

 The elements MUST be described in detail in another schema specific to the object.

 -->

 <complexType name="bodyType">

 <sequence>

 <any namespace="##other"/>

 </sequence>

 </complexType>

 <complexType name="trIDType">

 <sequence>

 <element name="clTRID" type="repp:trIDStringType"

 minOccurs="0"/>

 <element name="svTRID" type="repp:trIDStringType"/>

 </sequence>

 </complexType>

 <simpleType name="trIDStringType">

 <restriction base="token">

 <minLength value="3"/>

 <maxLength value="64"/>

 </restriction>

 </simpleType>

 <!--

 Response types.

 -->

 <complexType name="responseType">

 <sequence>

 <element name="result" type="repp:resultType"

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 40

 maxOccurs="unbounded"/>

 <element name="msgQ" type="repp:msgQType"

 minOccurs="0"/>

 <element name="resData" type="repp:extAnyType"

 minOccurs="0"/>

 <element name="extension" type="repp:extAnyType"

 minOccurs="0"/>

 <element name="trID" type="repp:trIDType"/>

 </sequence>

 </complexType>

 <complexType name="resultType">

 <sequence>

 <element name="msg" type="repp:msgType"/>

 <choice minOccurs="0" maxOccurs="unbounded">

 <element name="value" type="repp:errValueType"/>

 <element name="extValue" type="repp:extErrValueType"/>

 </choice>

 </sequence>

 <attribute name="code" type="repp:resultCodeType"

 use="required"/>

 </complexType>

 <complexType name="errValueType" mixed="true">

 <sequence>

 <any namespace="##any" processContents="skip"/>

 </sequence>

 <anyAttribute namespace="##any" processContents="skip"/>

 </complexType>

 <complexType name="extErrValueType">

 <sequence>

 <element name="value" type="repp:errValueType"/>

 <element name="reason" type="repp:msgType"/>

 </sequence>

 </complexType>

 <complexType name="msgQType">

 <sequence>

 <element name="qDate" type="dateTime"

 minOccurs="0"/>

 <element name="msg" type="repp:mixedMsgType"

 minOccurs="0"/>

 </sequence>

 <attribute name="count" type="unsignedLong"

 use="required"/>

 <attribute name="id" type="eppcom:minTokenType"

 use="required"/>

 </complexType>

 <complexType name="mixedMsgType" mixed="true">

 <sequence>

 <any processContents="skip"

 minOccurs="0" maxOccurs="unbounded"/>

 </sequence>

 <attribute name="lang" type="language"

 default="en"/>

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 41

 </complexType>

 <!--

 Human-readable text may be expressed in languages other than English.

 -->

 <complexType name="msgType">

 <simpleContent>

 <extension base="normalizedString">

 <attribute name="lang" type="language"

 default="en"/>

 </extension>

 </simpleContent>

 </complexType>

 <!--

 EPP result codes.

 -->

 <simpleType name="resultCodeType">

 <restriction base="unsignedShort">

 <enumeration value="1000"/>

 <enumeration value="1001"/>

 <enumeration value="1300"/>

 <enumeration value="1301"/>

 <enumeration value="1500"/>

 <enumeration value="2000"/>

 <enumeration value="2001"/>

 <enumeration value="2002"/>

 <enumeration value="2003"/>

 <enumeration value="2004"/>

 <enumeration value="2005"/>

 <enumeration value="2100"/>

 <enumeration value="2101"/>

 <enumeration value="2102"/>

 <enumeration value="2103"/>

 <enumeration value="2104"/>

 <enumeration value="2105"/>

 <enumeration value="2106"/>

 <enumeration value="2200"/>

 <enumeration value="2201"/>

 <enumeration value="2202"/>

 <enumeration value="2300"/>

 <enumeration value="2301"/>

 <enumeration value="2302"/>

 <enumeration value="2303"/>

 <enumeration value="2304"/>

 <enumeration value="2305"/>

 <enumeration value="2306"/>

 <enumeration value="2307"/>

 <enumeration value="2308"/>

 <enumeration value="2400"/>

 <enumeration value="2500"/>

 <enumeration value="2501"/>

 <enumeration value="2502"/>

 </restriction>

 </simpleType>

 <!--

 End of schema.

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 42

 -->

 </schema>

12. IANA Considerations

The URNs used in this document for XML namespaces and XML schemas have been

registered by the IANA as described by .

Registration request for the REPP namespace:

URI: urn:ietf:params:xml:ns:repp-1.0

Registrant Contact: See the "Author's Address" section of this document.

XML: None. Namespace URIs do not represent an XML specification.

Registration request for the EPP XML schema:

URI: urn:ietf:params:xml:schema:repp-1.0

Registrant Contact: See the "Author's Address" section of this document.

XML: See the Section 11 section of this document.

[RFC3688]

•

•

•

•

•

•

13. Internationalization Considerations

[TBD: any? Accept-Language in HTTP Header]

14. Security Considerations

Running REPP relies on the security of the underlying HTTP transport, hence the

best common practices for securing HTTP also apply to REPP. It is RECOMMENDED to follow

them closely.

Data confidentiality and integrity MUST be enforced, all data transport between a client and

server MUST be encrypted using TLS . Section 9 describes the level of security

that is REQUIRED for all REPP endpoints.

The EPP Login command, described by , for creating a client session MUST NOT

be used anymore. Due to the stateless nature of REPP, the client MUST include the

authentication credentials in each HTTP request. This MAY be done by using JSON Web

Tokens (JWT) or Basic authentication .

The management of authentication credentials, such as the "Change password"

functionality of the EPP Login command, MUST be performed by an out-of-band process.

REPP (HTTP) servers are vulnerable to common denial-of-service attacks. Therefore, the

security considerations of also apply to REPP.

[RFC9110]

[RFC5246]

[RFC5730]

[RFC7519] [RFC7617]

[RFC5734]

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 43

https://rfc-editor.org/rfc/rfc5734#appendix-Section%209

[REST]

18. References

18.1. Normative References

,

, 2000,

.

15. Obsolete EPP Result Codes

The following EPP result codes specified in are no longer meaningful in the

context of RESTful EPP and MUST NOT be used.

Code Reason

1500 Authentication functionality is delegated to the HTTP protocol layer

2100 The REPP URL includes a path segment for the version

2200 Authentication functionality is delegated to the HTTP protocol layer

2501 Authentication functionality is delegated to the HTTP protocol layer

2502 Rate limiting functionality is delegated to the HTTP protocol layer

Table 2: Obsolete EPP result codes

[RFC5730]

16. Overview of EPP modifications

This section lists a non-exhaustive overview of the most important modifications made in

RESTful EPP, compared to the EPP RFCs.

The use of HTTP as an additional application layer protocol.

HTTP adds additional status codes.

Some Commands are no longer used, such as the Login and Logout command.

No client sessions, every request needs to include authentication credentials.

A command MUST only contain a single object to operate on, the check command. For

example, the Check command only supports 1 object per request.

Request messages may no longer be required for most commands

Authentication and authorizations have become an out-of-band process.

Support for additional data formats such as JSON.

•

•

•

•

•

•

•

•

17. Acknowledgments

The authors would like to thank Miek Gieben who worked with us on an earlier, similar

draft.

Fielding, R. "Architectural Styles and the Design of Network-based

Software Architectures" <http://www.ics.uci.edu/~fielding/pubs/

dissertation/rest_arch_style.htm>

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 44

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

[RFC1738]

[RFC2119]

[RFC2581]

[RFC2616]

[RFC2617]

[RFC2914]

[RFC3688]

[RFC3735]

[RFC3986]

[RFC5246]

[RFC5730]

[RFC5731]

[RFC5732]

[RFC5733]

, , and ,

, , , December 1994,

.

, ,

, , , March 1997,

.

, , and , ,

, , April 1999,

.

, , , , , , and

, , ,

, June 1999, .

, , , , ,

, and ,

, , , June 1999,

.

, , , ,

, September 2000,

.

, , , ,

, January 2004, .

,

, , , March 2004,

.

, , and ,

, , , ,

January 2005, .

 and ,

, , , August 2008,

.

, , , ,

, August 2009,

.

,

, , , , August 2009,

.

, ,

, , , August 2009,

.

, ,

, , , August 2009,

.

Berners-Lee, T. Masinter, L. M. McCahill "Uniform Resource Locators

(URL)" RFC 1738 DOI 10.17487/RFC1738 <https://

www.rfc-editor.org/info/rfc1738>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels"

BCP 14 RFC 2119 DOI 10.17487/RFC2119 <https://

www.rfc-editor.org/info/rfc2119>

Allman, M. Paxson, V. W. Stevens "TCP Congestion Control" RFC

2581 DOI 10.17487/RFC2581 <https://www.rfc-editor.org/

info/rfc2581>

Fielding, R. Gettys, J. Mogul, J. Frystyk, H. Masinter, L. Leach, P. T.

Berners-Lee "Hypertext Transfer Protocol -- HTTP/1.1" RFC 2616 DOI

10.17487/RFC2616 <https://www.rfc-editor.org/info/rfc2616>

Franks, J. Hallam-Baker, P. Hostetler, J. Lawrence, S. Leach, P.

Luotonen, A. L. Stewart "HTTP Authentication: Basic and Digest

Access Authentication" RFC 2617 DOI 10.17487/RFC2617

<https://www.rfc-editor.org/info/rfc2617>

Floyd, S. "Congestion Control Principles" BCP 41 RFC 2914 DOI

10.17487/RFC2914 <https://www.rfc-editor.org/info/

rfc2914>

Mealling, M. "The IETF XML Registry" BCP 81 RFC 3688 DOI 10.17487/

RFC3688 <https://www.rfc-editor.org/info/rfc3688>

Hollenbeck, S. "Guidelines for Extending the Extensible Provisioning

Protocol (EPP)" RFC 3735 DOI 10.17487/RFC3735 <https://

www.rfc-editor.org/info/rfc3735>

Berners-Lee, T. Fielding, R. L. Masinter "Uniform Resource Identifier

(URI): Generic Syntax" STD 66 RFC 3986 DOI 10.17487/RFC3986

<https://www.rfc-editor.org/info/rfc3986>

Dierks, T. E. Rescorla "The Transport Layer Security (TLS) Protocol

Version 1.2" RFC 5246 DOI 10.17487/RFC5246 <https://

www.rfc-editor.org/info/rfc5246>

Hollenbeck, S. "Extensible Provisioning Protocol (EPP)" STD 69 RFC 5730

DOI 10.17487/RFC5730 <https://www.rfc-editor.org/info/

rfc5730>

Hollenbeck, S. "Extensible Provisioning Protocol (EPP) Domain Name

Mapping" STD 69 RFC 5731 DOI 10.17487/RFC5731

<https://www.rfc-editor.org/info/rfc5731>

Hollenbeck, S. "Extensible Provisioning Protocol (EPP) Host Mapping" STD

69 RFC 5732 DOI 10.17487/RFC5732 <https://www.rfc-

editor.org/info/rfc5732>

Hollenbeck, S. "Extensible Provisioning Protocol (EPP) Contact Mapping"

STD 69 RFC 5733 DOI 10.17487/RFC5733 <https://

www.rfc-editor.org/info/rfc5733>

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 45

https://www.rfc-editor.org/info/rfc1738
https://www.rfc-editor.org/info/rfc1738
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2581
https://www.rfc-editor.org/info/rfc2581
https://www.rfc-editor.org/info/rfc2616
https://www.rfc-editor.org/info/rfc2617
https://www.rfc-editor.org/info/rfc2914
https://www.rfc-editor.org/info/rfc2914
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3735
https://www.rfc-editor.org/info/rfc3735
https://www.rfc-editor.org/info/rfc3986
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5730
https://www.rfc-editor.org/info/rfc5730
https://www.rfc-editor.org/info/rfc5731
https://www.rfc-editor.org/info/rfc5732
https://www.rfc-editor.org/info/rfc5732
https://www.rfc-editor.org/info/rfc5733
https://www.rfc-editor.org/info/rfc5733

[RFC5734]

[RFC6648]

[RFC7159]

[RFC7234]

[RFC7519]

[RFC7540]

[RFC7617]

[RFC793]

[RFC8259]

[RFC9110]

[RFC9113]

[RFC9114]

[XML]

[YAML]

[SIDN-EXT]

, ,

, , , August 2009,

.

, , and ,

, , ,

, June 2012,

.

,

, , , March 2014,

.

, , and ,

, ,

, June 2014, .

, , and , ,

, , May 2015,

.

, , and ,

, , , May 2015,

.

, , ,

, September 2015,

.

, , ,

, September 1981, .

,

, , , , December 2017,

.

, , and ,

, , , , June 2022,

.

 and , , ,

, June 2022, .

, , , , June 2022,

.

, , 2013,

.

, ,

2000, .

18.2. Informative References

Hollenbeck, S. "Extensible Provisioning Protocol (EPP) Transport over TCP"

STD 69 RFC 5734 DOI 10.17487/RFC5734 <https://

www.rfc-editor.org/info/rfc5734>

Saint-Andre, P. Crocker, D. M. Nottingham "Deprecating the "X-"

Prefix and Similar Constructs in Application Protocols" BCP 178 RFC 6648

DOI 10.17487/RFC6648 <https://www.rfc-editor.org/info/

rfc6648>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange

Format" RFC 7159 DOI 10.17487/RFC7159 <https://

www.rfc-editor.org/info/rfc7159>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "Hypertext

Transfer Protocol (HTTP/1.1): Caching" RFC 7234 DOI 10.17487/

RFC7234 <https://www.rfc-editor.org/info/rfc7234>

Jones, M. Bradley, J. N. Sakimura "JSON Web Token (JWT)" RFC

7519 DOI 10.17487/RFC7519 <https://www.rfc-editor.org/

info/rfc7519>

Belshe, M. Peon, R. M. Thomson, Ed. "Hypertext Transfer Protocol

Version 2 (HTTP/2)" RFC 7540 DOI 10.17487/RFC7540

<https://www.rfc-editor.org/info/rfc7540>

Reschke, J. "The 'Basic' HTTP Authentication Scheme" RFC 7617 DOI

10.17487/RFC7617 <https://www.rfc-editor.org/info/

rfc7617>

Postel, J. "Transmission Control Protocol" RFC 793 DOI 10.17487/

RFC0793 <https://www.rfc-editor.org/info/rfc793>

Bray, T., Ed. "The JavaScript Object Notation (JSON) Data Interchange

Format" STD 90 RFC 8259 DOI 10.17487/RFC8259

<https://www.rfc-editor.org/info/rfc8259>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP

Semantics" STD 97 RFC 9110 DOI 10.17487/RFC9110

<https://www.rfc-editor.org/info/rfc9110>

Thomson, M., Ed. C. Benfield, Ed. "HTTP/2" RFC 9113 DOI 10.17487/

RFC9113 <https://www.rfc-editor.org/info/rfc9113>

Bishop, M., Ed. "HTTP/3" RFC 9114 DOI 10.17487/RFC9114

<https://www.rfc-editor.org/info/rfc9114>

W3C "Extensible Markup Language (XML) 1.0 (Fifth Edition)"

<https://www.w3.org/TR/xml>

YAML Language Development Team "YAML: YAML Ain't Markup Language"

<https://yaml.org/spec/1.2.2/>

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 46

https://www.rfc-editor.org/info/rfc5734
https://www.rfc-editor.org/info/rfc5734
https://www.rfc-editor.org/info/rfc6648
https://www.rfc-editor.org/info/rfc6648
https://www.rfc-editor.org/info/rfc7159
https://www.rfc-editor.org/info/rfc7159
https://www.rfc-editor.org/info/rfc7234
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7617
https://www.rfc-editor.org/info/rfc7617
https://www.rfc-editor.org/info/rfc793
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9113
https://www.rfc-editor.org/info/rfc9114
https://www.w3.org/TR/xml
https://yaml.org/spec/1.2.2/

, , 2019,

.

SIDN "Extensible Provisioning Protocol v1.0 schema .NL extensions"

<http://rxsd.domain-registry.nl/sidn-ext-epp-1.0.xsd>

Authors' Addresses

Maarten Wullink

SIDN Labs

 maarten.wullink@sidn.nl Email:

 https://sidn.nl/ URI:

Marco Davids

SIDN Labs

 marco.davids@sidn.nl Email:

 https://sidn.nl/ URI:

Internet-Draft RESTful Transport for EPP February 2024

Wullink & Davids Expires 18 August 2024 Page 47

http://rxsd.domain-registry.nl/sidn-ext-epp-1.0.xsd
mailto:maarten.wullink@sidn.nl
https://sidn.nl/
mailto:marco.davids@sidn.nl
https://sidn.nl/

	Extensible Provisioning Protocol (EPP) RESTful Transport
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Conventions Used in This Document
	4. Design Considerations
	5. EPP Extension Framework
	6. Resource Naming Convention
	7. Session Management
	8. REST
	8.1. Method Definition
	8.2. Content negotiation
	8.3. Request
	8.4. Response
	8.5. Error Handling

	9. Command Mapping
	9.1. Hello
	9.2. Login
	9.3. Logout
	9.4. Query Resources
	9.4.1. Check
	9.4.2. Info
	9.4.2.1. Object Filtering

	9.4.3. Poll
	9.4.3.1. Poll Request
	9.4.3.2. Poll Ack

	9.4.4. Transfer Query

	9.5. Transform Resources
	9.5.1. Create
	9.5.2. Delete
	9.5.3. Renew
	9.5.4. Transfer
	9.5.4.1. Request
	9.5.4.2. Cancel
	9.5.4.3. Reject
	9.5.4.4. Approve

	9.5.5. Update

	9.6. Extension Framework
	9.6.1. Protocol Extension
	9.6.2. Object Extension
	9.6.3. Command-Response Extension

	10. Protocol Considerations
	11. Formal Syntax
	12. IANA Considerations
	13. Internationalization Considerations
	14. Security Considerations
	15. Obsolete EPP Result Codes
	16. Overview of EPP modifications
	17. Acknowledgments
	18. References
	18.1. Normative References
	18.2. Informative References

	Authors' Addresses

